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Abstract— In this work, the goal is to achieve both 

stabilization and synchronization of a general class of 

fractional-order chaotic systems. It is assumed that there 

are uncertainties and external disturbances in the system, 

and it is also supposed that the system parameters are 

unknown. Uncertainties and disturbances are undesirable 

factors that can disrupt the system response. To this end, 

appropriate adaptive laws have been proposed to address  

these factors. A systematic step-by-step technique is also 

developed for designing a controller based on the 

backstepping method. The analysis of the proposed control 

structure is carried out according to the fractional 

Lyapunov theorem which is a more realistic technique for 

the analysis and stability of nonlinear systems. Finally, the 

simulation results are presented to confirm and prove the 

effectiveness of the proposed method. The results of 

implementing our proposed controller for different 

fractional-order chaotic systems are compared with some 

control approaches in the available papers and it confirms 

the superiority of the proposed control in this paper. 

 
Keywords: Adaptive control, backstepping control, chaotic 

system, fractional calculus, synchronization.  

 

I.INTRODUCTION 

N recent decades, much attention has been paid to 

nonlinear control. Given the chaos in real-world  

systems and many useful applications in the fields of 

physics and engineering, several methods have been 

proposed in the last few years to stabilize and 

synchronize chaotic systems such as: fuzzy control [1,2], 

observer control [3], sliding mode control [4-6], active 

 
 

control [7], output feedback control [8,9], impulsive 

control [10,11], neural network control [12,13], etc. 

Fractional-order chaotic systems have also been 

developed. Although fractional calculus is an old 

mathematical subject dating back more than 300 years, it 

has attracted the attention of many researchers in recent 

years. In fact, all physical phenomena in nature exist in 

the form of fractional-order and the integer-order 

differential equation is just a particular case of fractional-

order differential equation. Today, many fractional-order 

differential systems have chaotic behavior. The 

advantages of fractional-order models in comparison to 

integer-order models are: first, the fractional description 

can provide a more explicit and accurate explanation, so 

it is closer to reality. Second, memory is included in 

fractional-order systems. Third, fractional-order models 

can enlarge the key space, and hence are more efficient 

in coding because they have more customizable 

variables. The various techniques mentioned above have 

also been used to stabilize and synchronize fractional-

order chaotic systems [14-19]. 

In [20], Huang et al. have developed an active control 

method for the synchronization and anti-synchronization 

of the fractional-order chaotic financial systems. In [21], 

a sliding mode control method, which is limited to three-

dimensional system, is presented to synchronize the 

fractional-order chaotic system.  Muthukumar et al. have 

proposed the fuzzy predictive control for synchronizing 

two similar systems in the T–S fuzzy model [22]. Chen 

et al. have used neural networks to synchronize the 
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fractional-order system [23]. Most researches regarding 

the stabilization and synchronization of fractional-order 

chaotic systems have not taken the uncertainties and 

disturbances into account and have also assumed all 

system parameters to be known. However, the proposed 

method is applicable to both synchronization and 

stabilization of chaotic systems with uncertainties, 

disturbances, and unknown parameters. 

In many real systems, the variability of time, the 

uncertainty of dynamics and the presence of noise cause 

uncertainties and disturbances in the systems and it is 

difficult to determine uncertain bounds and disturbances 

in advance. Furthermore, all system parameters may not 

be specified. Therefore, adaptive control [24-27], which 

is another idea of this article, is suggested to overcome 

these problems. 

In [28], the problems of synchronization and 

stabilization of fractional-order chaotic systems in the 

presence of a fractional sliding mode controller have 

been investigated by Aghababa. The control signal in 

[28] has large fluctuations and this is not practical. In [29] 

and [30], chattering occurs in the control signal, which 

restricts the operation of the controller. However, another 

strength of this paper is that permanent chattering is 

removed in the control signal and it is practical. 

One of the most popular methods used to stabilize and 

synchronize nonlinear systems is the backstepping 

method developed by kristic et al [31]. Backstepping 

control is a recursive method that combines Lyapunov 

function with feedback control design. This method 

converts the whole system design problem into several 

successive design problems for lower-degree subsystems 

and even scalars. Due to the flexibility of subsystems 

with lower degree, a One of the most popular methods 

used to stabilize and synchronize nonlinear systems is the 

backstepping method developed by kristic et al [31]. 

Backstepping control is a recursive method that 

combines Lyapunov function with feedback control 

design. This method converts the whole system design 

problem into several successive design problems for 

lower-degree subsystems and even scalars. Due to the 

flexibility of subsystems with lower degree, a 

backstepping control has the capability of solving 

stabilization, synchronization and robust control 

problems under freer constraints than other methods. A 

control algorithm is chosen for each step in a way that the 

corresponding Lyapunov function expresses the stability 

of each system. The extension of Lyapunov's theory to 

fractional-order nonlinear systems along with the 

development of Mittag-Leffler concept of stability is 

proposed by Li et al [32].  

Using this stability concept in order to design 

controller for fractional-order nonlinear systems is an 

interesting topic which is the focus of this paper. 

Although the stability of systems in [29] and [33,34] has 

been proven by traditional Lyapunov theorem, it is not 

applicable to fractional-order systems. However, in this 

analysis, the stability analysis and therefore the design of 

the stabilization and synchronization controller are 

combined with the direct fractional Lyapunov method 

and Mittag-Leffler stability which offer a more realistic 

approach to stability evaluation of systems. 

The proposed design in [34] is based on an adaptive 

active sliding mode controller for the synchronization of 

two integer-order and fractional-order chaotic systems 

that are limited to synchronizing two-dimensional 

systems. In [35], Nikdel et al. have developed an adaptive 

backstepping control scheme to stabilize two-

dimensional chaotic systems. However, the control 

design presented in this article is applicable to n-

dimensional systems. The proposed method in [36] uses 

the backstepping method to synchronize two similar 

fractional-order chaotic systems and also considers all 

the system parameters as known parameters. However, in 

this paper, though, the proposed backstepping control 

scheme can be used to synchronize two similar and two 

different systems. 

Using the combination of fractional Lyapunov stability 

and Mittag-Leffler stability for backstepping-based 

control of fractional-order chaotic systems has been 

understudied. Moreover, most of the proposed controllers 

use the traditional Lyapunov stability theory. This fact 

has provided the motivation to design controllers for 

fractional-order systems using the fractional Lyapunov 

stability method. According to the above discussion, in 

this paper, an adaptive backstepping control method is 

used for each n-dimensional fractional-order system. The 

proposed approach addresses both problems of 

stabilization and synchronization of fractional-order 

chaotic systems. First, the stabilization of fractional-

order chaotic systems with unknown parameters, 

uncertainties and disturbances is studied showing that the 

states of system tend to zero. Then, utilizing the 

suggested controller, the synchronization of fractional-

order chaotic systems is examined. Furthermore, 

appropriate adaptive laws have been developed to deal 

with unknown parameters. Finally, using fractional 

Lyapunov theory, the convergence and stability of the 

proposed method are investigated. 

The advantages of our proposed method are as follows: 

• The proposed method is applicable to a wide 

range of chaotic systems. 

• chattering phenomenon is entirely eliminated 

in the proposed method and it is practically 

usable. 

• The proposed method is applicable to both 

synchronization and stabilization of n-

dimensional fractional-order chaotic systems 
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in the presence of uncertainties, disturbances, 

and unknown parameters. 

• Appropriate adaptive laws are introduced for 

dealing with unknown parameters. 

Additionally, information about disturbance 

bound is not needed in the above method. 

• It can be used in applications such as complex 

networks, secret signaling, multilateral 

communications and many other engineering 

fields. 

This paper is organized as follows. In section 2, some 

preliminaries of fractional calculus are briefly reviewed. 

Section 3 introduces the stabilization issue of fractional-

order chaotic systems using adaptive backstepping 

control. Then, according to Lyapunov theorem, the 

stability of the proposed approach is investigated. Section 

4 explains the synchronization of fractional-order chaotic 

systems via backstepping approach in the presence of 

uncertainties, disturbances and unknown parameters. In 

section 5, numerical simulations show that the suggested 

techniques are effective and applicable. In this section, 

three recently published control approaches are also 

simulated and their results are compared with this 

proposed method to demonstrate the effectiveness of the 

proposed controller. The concluding part is in section 6. 

II.PRELIMINARIES OF FRACTIONAL CALCULUS 

In this paper, the fractional-order derivative/integral 

operation is shown by the operator 𝐷𝑡
𝑞

𝑎
 , expressed as 

𝐷𝑡
𝑞

𝑎
 = {

𝑑𝑞

𝑑𝑡𝑞                     𝑞 > 0

1                         𝑞 = 0

∫ (𝑑𝜏)−𝑞𝑡

𝑎
        𝑞 < 0

   , (1) 

where 𝑎, 𝑡 are the limits of operation and 𝑞 ∈ (0,1) is 

the fractional-order [37]. There are many definitions of 

fractional derivative among which the definitions 

presented by Caputo, Riemann–Liouville (RL) and 

Grunwald–Letnikov (GL) are well-known definitions of 

fractional derivative. 

Definition 1. The Riemann–Liouville fractional 

integration of order 𝑞 of a continuous function 𝑓(𝑡) is 

represented below 

𝐼𝑡
𝑞

𝑡0
 𝑓(𝑡) =

1

𝛤(𝑞)
∫

𝑓(𝜏)

(𝑡−𝜏)1−𝑞

𝑡

𝑡0
𝑑𝜏, (2) 

where 𝛤(𝑞) is the well–known Gamma function 

[16,37]. 

Definition 2. The 𝑞-order Riemann–Liouville 

fractional derivative of function 𝑓(𝑡) is expressed by 

𝐷𝑡
𝑞

𝑡0
 𝑓(𝑡) =

𝑑𝑞𝑓(𝑡)

𝑑𝑡𝑞 =
1

𝛤(𝑚−𝑞)

𝑑𝑚

𝑑𝑡𝑚 ∫
𝑓(𝜏)

(𝑡−𝜏)𝑞−𝑚+1

𝑡

𝑡0
𝑑𝜏, (3) 

where 𝑚 − 1 < 𝑞 ≤ 𝑚, 𝑚 ∈ 𝑁 [16,37]. 

Definition 3. The 𝑞-order Caputo fractional derivative 

of function 𝑓(𝑡) is given by 

𝐷𝑡
𝑞

𝑡0
 𝑓(𝑡) =

{

1

𝛤(𝑚−𝑞)
∫

𝑓(𝑚)(𝜏)

(𝑡−𝜏)𝑞−𝑚+1

𝑡

𝑡0
𝑑𝜏,   𝑚 − 1 < 𝑞 < 𝑚

𝑑𝑚𝑓(𝑡)

𝑑𝑡𝑚 ,                                   𝑞 = 𝑚                  
   , (4) 

where 𝑚 is the smallest integer number, larger than 𝑞 

[16,37].  

Remark 1. In this article, the Caputo’s definition of 

fractional derivative is utilized. For simplicity, the 

symbol 𝑫𝒒 represents fractional derivative. 

Theorem 1. Suppose that 𝑥(𝑡) = 0 is an equilibrium 

point of the fractional-order nonlinear system 

𝐷0
𝐶

𝑡
𝑞

𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)). (5) 

If there exists a Lyapunov function 𝑉(𝑡, 𝑥(𝑡)) and 

class K functions 𝑔𝑖, 𝑖 = 1,2,3 such that  

𝑔1(‖𝑥(𝑡)‖) ≤ 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑔2(‖𝑥(𝑡)‖), (6) 

𝐷0
𝐶

𝑡
𝑞

𝑉(𝑡, 𝑥(𝑡)) ≤ −𝑔3(‖𝑥(𝑡)‖), (7) 

then (5) will be asymptotically stable [38]. 

Lemma 1. Let 𝑥(𝑡) ∈ 𝑅 be a real-valued continuous 

differentiable function. Then for any 𝜇 = 2𝑛, 𝑛 ∈ 𝑁,  

𝐷𝑡
𝑞

𝑥𝜇(𝑡) ≤ 𝜇𝑥𝜇−1(𝑡)𝐷𝑡
𝑞

𝑥(𝑡), (8) 

where 𝑞 ∈ (0,1) is the fractional-order [39]. 

Corollary 1. Let 𝑥(𝑡) ∈ 𝑅 be a real-valued continuous 

differentiable function. Then for any time 𝑡 [39] 

1

2
𝐷𝑡

𝑞
𝑥2(𝑡) ≤ 𝑥(𝑡)𝐷𝑡

𝑞
𝑥(𝑡)  ∀𝑞 ∈ (0,1). (9) 

III.STABILIZATION OF FRACTIONAL-ORDER CHAOTIC 

SYSTEMS USING ADAPTIVE BACKSTEPPING CONTROL  

A. Problem Formulation 

Consider a fractional-order chaotic system expressed 

by the following class of uncertain n-dimensional 

nonlinear equations  

{
𝐷𝑞𝑥𝑖 = 𝑥𝑖+1 ,   1 ≤ 𝑖 ≤ 𝑛 − 1                                                 

𝐷𝑞𝑥𝑛 = 𝑓(𝑥, 𝑡) + 𝜹𝑇𝐹(𝑥, 𝑡) + ∆𝑓(𝑥, 𝑡) + 𝑑(𝑥, 𝑡) + 𝑢(𝑡)
,  

(10) 

where 𝑞 ∈ (0,1), 𝑥(𝑡) = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ 𝑅𝑛 is the 

state vector. 𝑓(𝑥, 𝑡) ∈ 𝑅 and 𝐹(𝑥, 𝑡) ∈ 𝑅1×𝑝 are known 

nonlinear functions. 𝜹 ∈ 𝑅𝑝 is the uncertain parameter 

vector. ∆𝑓(𝑥, 𝑡) ∈ 𝑅 and 𝑑(𝑥, 𝑡) ∈ 𝑅 indicate uncertainty 

and external disturbance, respectively. 𝑢(𝑡) ∈ 𝑅 is the 

control input to be designed later. 

Assumption 1. The uncertainty and disturbance are 

bounded and defined by  
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|∆𝑓(𝑥, 𝑡)| ≤ 𝜎 and  |𝑑(𝑥, 𝑡)| ≤ 𝜗 . (11) 

Assumption 2. The constants 𝜎 and 𝜗 are unknown 

positive. 

Definition 4. The purpose of the stabilization problem 

is to select an appropriate controller 𝑢(𝑡) which 

lim
𝑡→∞

‖𝑥(𝑡)‖ = 0, i.e. the states of system (10) will tend to 

zero [40]. 

A control algorithm will be developed in the next 

section. 

B. Controller Design 

Here, adaptive backstepping control approach is used 

to get stabilization of a fractional-order chaotic system in 

(10) with uncertainties, disturbances and unknown 

parameters.  

In each step of the proposed algorithm, a virtual 

controller is developed for each subsystem and moving 

to the last equation, the final controller 𝑢(𝑡) is optained. 

In each step, a suitable Lyapunov function is selected and 

a stabilization controller is designed using Theorem 1. 

An appropriate adaptive law is also used to estimate the 

unknown parameters. The results of this section are 

proved by the fractional-order extension of Lyapunov 

direct method.   

The coordinate transformations are defined below 

{
𝑧1 = 𝑥1            
𝑧𝑖 = 𝑥𝑖 − 𝛼𝑖−1

 , 2 ≤ 𝑖 ≤ 𝑛 . (12) 

The result is shown as the following theorem: 

Theorem 2. For the fractional-order system (10) with 

unknown parameters, if the adaptive backstepping 

control is designed as 

𝑢(𝑡) = −𝑓(𝑥, 𝑡) − �̂�𝑇𝐹(𝑥, 𝑡) + 𝐷𝑞𝛼𝑛−1 − 𝑧𝑛−1 −

𝛾𝑛𝑧𝑛 − (�̂� + �̂�)𝑠𝑔𝑛(𝑧𝑛), (13) 

and adaptive laws of �̂�, �̂� and �̂� as 

𝐷𝑞�̂� = 𝑧𝑛𝐹(𝑥, 𝑡), (14) 

𝐷𝑞�̂� = |𝑧𝑛|, (15) 

𝐷𝑞�̂� = |𝑧𝑛|, (16) 

then states of system are asymptotic stabilization, i.e. 

lim
𝑡→∞

‖𝑥(𝑡)‖ = 0. 

Proof. Step 1: Let 𝑧1 = 𝑥1 and differentiating two 

sides of it, one obtains 

𝐷𝑞𝑧1 = 𝐷𝑞𝑥1 = 𝑥2 .  (17) 

Suppose for the first subsystem, 𝑥2 is the controller and 

𝛼1 is the virtual controller. Consider 𝑧2 as the difference 

between the two controllers, i.e. 𝑧2 = 𝑥2 − 𝛼1 ⇒ 𝑥2 =
𝑧2 + 𝛼1. Now equation (17) is rewritten below 

𝐷𝑞𝑧1 = 𝑧2 + 𝛼1 . (18) 

The Lyapunov function candidate  𝑉1 is selected for 

subsystem (18) below 

𝑉1 =
1

2
𝑧1

2 . (19) 

Taking the fractional-order derivative of Lyapunov 

function and utilizing the Lemmas 1 and 2, one has 

𝐷𝑞𝑉1 ≤ 𝑧1𝐷𝑞𝑧1 = 𝑧1(𝑧2 + 𝛼1). (20) 

In order to fulfill the stability criterion stated in the 

previous section, the term 𝛼1 is defined below 

𝛼1 = −𝛾1𝑧1 , (21) 

which leads to 𝐷𝑞𝑉1 ≤ −𝛾1𝑧1
2 + 𝑧1𝑧2. 

The term 𝑧1𝑧2 should be deleted in the above 

statement. By choosing 𝛼1 in (21) and using Theorem 1, 

it is guaranteed that 𝑧1 tends to zero, leading to subsystem 

stability (18). 

Step 2: for the second subsystem, it yields 

𝐷𝑞𝑧2 = 𝑥3 − 𝐷𝑞𝛼1 . (22) 

Let us define 𝑧3 = 𝑥3 − 𝛼2 which gives 𝑥3 = 𝑧3 + 𝛼2, 

where 𝑥3 is the controller and 𝛼2 is the virtual controller. 

By the above definition, Equation (22) is written below 

𝐷𝑞𝑧2 = 𝑧3 + 𝛼2 − 𝐷𝑞𝛼1 . (23) 

Consider the candidate of Lyapunov function below 

𝑉2 = 𝑉1 +
1

2
𝑧2

2 . (24) 

Tacking fractional-order differentiating 𝑉2 in (24), it 

yields 

𝐷𝑞𝑉2 ≤ 𝐷𝑞𝑉1 + 𝑧2𝐷𝑞𝑧2 ≤ −𝛾1𝑧1
2 + 𝑧1𝑧2 + 𝑧2(𝑧3 +

𝛼2 − 𝐷𝑞𝛼1). (25) 

The virtual control signal 𝛼2 is defined below 

𝛼2 = −𝛾2𝑧2 − 𝑧1 + 𝐷𝑞𝛼1 . (26) 

By substituting (26) into (25), we get 𝐷𝑞𝑉2 ≤
−𝛾1𝑧1

2 − 𝛾2𝑧2
2 + 𝑧2𝑧3.  

Similarly, in order to ensure the stabilization of 

subsystems in this stage, the term 𝑧2𝑧3 should be 

eliminated. Using the same method as above, we can go 

to step (n-1). Here the virtual controller 𝛼𝑛−1 is selected 

as follows 

𝛼𝑛−1 = −𝛾𝑛−1𝑧𝑛−1 − 𝑧𝑛−2 + 𝐷𝑞𝛼𝑛−2 . (27) 

Finally, in step n the Lyapunov function is chosen 

below 

𝑉𝑛 = 𝑉𝑛−1 +
1

2
𝑧𝑛

2 +
1

2
(𝜎 − �̂�)2 +

1

2
(𝜗 − �̂�)

2
+

1

2
‖𝜹 −

 [
 D

O
I:

 1
0.

52
54

7/
jo

ce
e.

1.
1.

71
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 jo
ce

e.
kn

tu
.a

c.
ir

 o
n 

20
24

-0
4-

20
 ]

 

                             4 / 13

http://dx.doi.org/10.52547/jocee.1.1.71
http://jocee.kntu.ac.ir/article-1-24-en.html


  Journal of Control (English Edition), VOL. 01, NO. 01, July. 2022 

75 

�̂�‖
2

2
 ,   

𝐷𝑞𝑉𝑛 ≤ 𝐷𝑞𝑉𝑛−1 + 𝑧𝑛𝐷𝑞𝑧𝑛 − (𝜎 − �̂�)𝐷𝑞�̂� − (𝜗 −

�̂�)𝐷𝑞�̂� − (𝜹 − �̂�)
𝑇

𝐷𝑞 �̂� ≤ −𝛾1𝑧1
2 − 𝛾2𝑧2

2 … −

𝛾𝑛−1𝑧𝑛−1
2 + 𝑧𝑛−1𝑧𝑛 + 𝑧𝑛(𝑓(𝑥, 𝑡) + 𝜹𝑇𝐹(𝑥, 𝑡) +

∆𝑓(𝑥, 𝑡) + 𝑑(𝑥, 𝑡) + 𝑢(𝑡) − 𝐷𝑞𝛼𝑛−1) − (𝜎 − �̂�)𝐷𝑞�̂� −

(𝜗 − �̂�)𝐷𝑞�̂� − (𝜹 − �̂�)
𝑇

𝐷𝑞�̂� . (28) 

By substituting the final controller (13) and the 

adaptive law (14) into (28), it is clear that 

𝐷𝑞𝑉𝑛 ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛−1

𝑖=1 + 𝑧𝑛−1𝑧𝑛 + 𝑧𝑛 ((𝜹 −

�̂�)
𝑇

𝐹(𝑥, 𝑡) + ∆𝑓(𝑥, 𝑡) + 𝑑(𝑥, 𝑡) − 𝑧𝑛−1 − 𝛾𝑛𝑧𝑛 − (�̂� +

�̂�)𝑠𝑔𝑛(𝑧𝑛)) − (𝜎 − �̂�)𝐷𝑞�̂� − (𝜗 − �̂�)𝐷𝑞�̂� − 𝑧𝑛(𝜹 −

�̂�)
𝑇

𝐹(𝑥, 𝑡) ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛

𝑖=1 + |𝑧𝑛|(|∆𝑓(𝑥, 𝑡)| +

|𝑑(𝑥, 𝑡)|) − (�̂� + �̂�)|𝑧𝑛| − (𝜎 − �̂�)𝐷𝑞�̂� − (𝜗 −

�̂�)𝐷𝑞�̂� . (29) 

Utilizing Assumptions 1 and 2, and substituting the 

adaptive laws (15,16) into (29), one has 

𝐷𝑞𝑉𝑛 ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛

𝑖=1 + (𝜎 + 𝜗)|𝑧𝑛| − (�̂� + �̂�)|𝑧𝑛| −

(𝜎 − �̂�)|𝑧𝑛| − (𝜗 − �̂�)|𝑧𝑛| . (30) 

It yields  

𝐷𝑞𝑉𝑛 ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛

𝑖=1 ≤ 0 , (31) 

where 𝛾𝑖 ≥ 0. So, according to Theorem 1, the 

suggested control strategy will guarantee that states of 

system (10) tend to zero. Thus, the Theorem 2 is proved. 

IV.SYNCRONIZATION OF FRACTIONAL-ORDER CHAOTIC 

SYSTEMS USING ADAPTIVE BACKSTEPPING CONTROL 

A. Problem Formulation 

Consider the fractional-order chaotic system with 

uncertain parameters as below 

{
𝐷𝑞𝑥𝑖 = 𝑥𝑖+1 ,   1 ≤ 𝑖 ≤ 𝑛 − 1                                    

𝐷𝑞𝑥𝑛 = 𝑓(𝑥, 𝑡) + 𝜹𝑇𝐹(𝑥, 𝑡) + ∆𝑓(𝑥, 𝑡) + 𝑑𝑚(𝑥, 𝑡)
  .

 (32) 

System (32) is a master system, where 𝑞 ∈ (0,1), 

𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)]𝑇 ∈ 𝑅𝑛 is the state vector 

of the first system, 𝑓(𝑥, 𝑡) ∈ 𝑅 and 𝐹(𝑥, 𝑡) ∈ 𝑅1×𝑝 are 

known nonlinear functions. 𝜹 ∈ 𝑅𝑝 is the uncertain 

parameter vector. ∆𝑓(𝑥, 𝑡) and 𝑑𝑚(𝑥, 𝑡) indicate 

uncertainty and external disturbance of the first system, 

respectively. It can be assumed that ∆𝑓(𝑥, 𝑡) and 

𝑑𝑚(𝑥, 𝑡) are bounded by some positive constants i.e. 

|∆𝑓(𝑥, 𝑡) | < ∆1 and |𝑑𝑚(𝑥, 𝑡)| < 𝑑1. 

The slave system with the control signal 𝑢(𝑡) ∈ 𝑅 is 

described below 

{
𝐷𝑞𝑦𝑖 = 𝑦𝑖+1 ,   1 ≤ 𝑖 ≤ 𝑛 − 1                                                  

𝐷𝑞𝑦𝑛 = 𝑔(𝑦, 𝑡) + 𝜽𝑇𝐺(𝑦, 𝑡) + ∆𝑔(𝑦, 𝑡) + 𝑑𝑠(𝑦, 𝑡) + 𝑢(𝑡)
  ,

 (33) 

where 𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡)]𝑇 ∈ 𝑅𝑛 is the 

state vector, 𝑔(𝑦, 𝑡) and 𝐺(𝑦, 𝑡) ∈ 𝑅1×𝑝 are known 

nonlinear functions, 𝜽 ∈ 𝑅𝑝  is the uncertain parameter 

vector and finally ∆𝑔(𝑦, 𝑡) and 𝑑𝑠(𝑦, 𝑡) indicate 

uncertainty and external disturbance of the slave system, 

respectively. It can be assumed that ∆𝑔(𝑦, 𝑡) and 𝑑𝑠(𝑦, 𝑡) 

are bounded by some positive constants i.e. |∆𝑔(𝑦, 𝑡)| <
∆2 and |𝑑𝑠(𝑦, 𝑡)| < 𝑑2. 

Assumption 3. With the above discussion, one can 

obtain that 

|∆𝑔(𝑦, 𝑡) − ∆𝑓(𝑥, 𝑡)| < 𝜎1 . (34) 

|𝑑𝑠(𝑦, 𝑡) − 𝑑𝑚(𝑥, 𝑡)| < 𝜗1 . (35) 

Assumption 4. The constants 𝜎1 𝑎𝑛𝑑 𝜗1 are unknown 

positive. 

Definition 5. To achieve the synchronization issue, the 

error among master and slave systems is defined as 

𝑒𝑖(𝑡) = 𝑦𝑖(𝑡) − 𝑥𝑖(𝑡), 𝑖 = 1,2, … , 𝑛. So, the aim is to 

synchronize system (32) with system (33) via suggested 

control strategy, i.e. [16] 

lim
𝑡→∞

‖𝑒(𝑡)‖ = lim
𝑡→∞

‖𝑦(𝑡) − 𝑥(𝑡)‖ = 0 . (36) 

Subtracting (32) from (33), the synchronization error 

dynamics will be below 

{

𝐷𝑞𝑒𝑖 = 𝑒𝑖+1 ,   1 ≤ 𝑖 ≤                                                        

𝐷𝑞𝑒𝑛 = 𝑔(𝑦, 𝑡) + 𝜽𝑇𝐺(𝑦, 𝑡) + ∆𝑔(𝑦, 𝑡) + 𝑑𝑠(𝑦, 𝑡) −

𝑓(𝑥, 𝑡) − 𝜹𝑇𝐹(𝑥, 𝑡) − ∆𝑓(𝑥, 𝑡) − 𝑑𝑚(𝑥, 𝑡) + 𝑢(𝑡)
 
  (37) 

Clearly, the synchronization problem has turned into 

the stabilization issue of error system. To develop the 

controller, the backstepping method, which is described 

in the next section is used. 

B. Controller Design 

Here, adaptive backstepping control is utilized for 

synchronization of two different fractional-order chaotic 

systems with uncertainties, disturbances and unknown 

parameters. Coordinate transformations are defined as 

{
𝑧1 = 𝑒1            
𝑧𝑖 = 𝑒𝑖 − 𝛼𝑖−1

 ,2 ≤ 𝑖 ≤ 𝑛 .  (38) 

In the subsequent lines, the method of designing the 

controller is illustrated by the following theorem. 

Theorem 3. By using the controller (39) and the 

adaptive laws (39-43) as follow 

𝑢(𝑡) = −𝑔(𝑦, 𝑡) − �̂�𝑇𝐺(𝑦, 𝑡) + 𝑓(𝑥, 𝑡) + �̂�𝑇𝐹(𝑥, 𝑡) +

𝐷𝑞𝛼𝑛−1 − 𝑧𝑛−1 − 𝛾𝑛𝑧𝑛 − (�̂�1 + �̂�1)𝑠𝑔𝑛(𝑧𝑛), (39) 

𝐷𝑞�̂� = 𝑧𝑛𝐹(𝑥, 𝑡), (40) 

𝐷𝑞�̂� = −𝑧𝑛𝐹(𝑥, 𝑡), (41) 
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𝐷𝑞�̂�1 = |𝑧𝑛|, (42) 

𝐷𝑞�̂�1 = |𝑧𝑛|, (43) 

the synchronization error moves toward zero, i.e. the 

slave system trajectories (33) tend to the master system 

trajectory (32). 

Proof. Step 1: Let 𝑧1 = 𝑒1 and its derivative is 

𝐷𝑞𝑧1 = 𝐷𝑞𝑒1 = 𝑒2 , (44) 

where 𝑒2 is the controller, 𝛼1 is the virtual controller 

and 𝑧1 is the difference between the two controllers, i.e. 

𝑧2 = 𝑒2 − 𝛼1 ⇒ 𝑒2 = 𝑧2 + 𝛼1. 

Therefore, equation (44) is rewritten below 

𝐷𝑞𝑧1 = 𝑧2 + 𝛼1 . (45) 

The Lyapunov function 𝑉1 can be selected as 𝑉1 =
1

2
𝑧1

2.                      

Taking the fractional-order derivative of  𝑉1 and 

utilizing the Lemmas 1 and 2, it yields 

𝐷𝑞𝑉1 ≤ 𝑧1𝐷𝑞𝑧1 = 𝑧1(𝑧2 + 𝛼1). (46) 

The term 𝛼1 is selected in a way to meet the stability 

criterion, 

𝛼1 = −𝛾1𝑧1 , (47) 

which leads to 𝐷𝑞𝑉1 ≤ −𝛾1𝑧1
2 + 𝑧1𝑧2. 

Step 2: Similarly, for the second subsystem, it yields 

𝐷𝑞𝑧2 = 𝑒3 − 𝐷𝑞𝛼1 . (48) 

Let us define 𝑧3 = 𝑒3 − 𝛼2 which gives 𝑒3 = 𝑧3 + 𝛼2, 

where 𝑒3 is the controller and 𝛼2 is the virtual controller. 

Now one can get 

𝐷𝑞𝑧2 = 𝑧3 + 𝛼2 − 𝐷𝑞𝛼1 . (49) 

The Lyapunov function is selected for the second 

subsystem as 𝑉2 = 𝑉1 +
1

2
𝑧2

2. 

Tacking fractional-order derivative of 𝑉2, one has 

𝐷𝑞𝑉2 ≤ 𝐷𝑞𝑉1 + 𝑧2𝐷𝑞𝑧2 ≤ −𝛾1𝑧1
2 + 𝑧1𝑧2 + 𝑧2(𝑧3 +

𝛼2 − 𝐷𝑞𝛼1). (50) 

The virtual control signal 𝛼2 is defined below 

𝛼2 = −𝛾2𝑧2 − 𝑧1 + 𝐷𝑞𝛼1 . (51) 

Substituting (51) into (50), we get 𝐷𝑞𝑉2 ≤ −𝛾1𝑧1
2 −

𝛾2𝑧2
2 + 𝑧2𝑧3. 

Similarly, in order to ensure the stabilization of 

subsystems in this stage, the term 𝑧2𝑧3 should be 

eliminated. Using the same method as above, we can go 

to step (n-1). The virtual controller 𝛼𝑛−1 is selected 

below 

𝛼𝑛−1 = −𝛾𝑛−1𝑧𝑛−1 − 𝑧𝑛−2 + 𝐷𝑞𝛼𝑛−2 . (52) 

Step n: The Lyapunov function is defined by 

𝑉𝑛 = 𝑉𝑛−1 +
1

2
𝑧𝑛

2 +
1

2
(𝜎1 − �̂�1)2 +

1

2
(𝜗1 − �̂�1)2 +

1

2
‖𝜹 − �̂�‖

2

2
+

1

2
‖𝜽 − �̂�‖

2

2
 ,  

𝐷𝑞𝑉𝑛 ≤ 𝐷𝑞𝑉𝑛−1 + 𝑧𝑛𝐷𝑞𝑧𝑛 − (𝜎1 − �̂�1)𝐷𝑞�̂�1 − (𝜗1 −

�̂�1)𝐷𝑞�̂�1−(𝜹 − �̂�)
𝑇

𝐷𝑞�̂� − (𝜽 − �̂�)
𝑇

𝐷𝑞�̂� ≤ −𝛾1𝑧1
2 −

𝛾2𝑧2
2 … − 𝛾𝑛−1𝑧𝑛−1

2 + 𝑧𝑛−1𝑧𝑛 + 𝑧𝑛(𝑔(𝑦, 𝑡) +

𝜽𝑇𝐺(𝑦, 𝑡) + ∆𝑔(𝑦, 𝑡) + 𝑑𝑠(𝑦, 𝑡) − 𝑓(𝑥, 𝑡) −
𝜹𝑇𝐹(𝑥, 𝑡) − ∆𝑓(𝑥, 𝑡) − 𝑑𝑚(𝑥, 𝑡) + 𝑢(𝑡) − 𝐷𝑞𝛼𝑛−1) −

(𝜎1 − �̂�1)𝐷𝑞�̂�1 − (𝜗1 − �̂�1)𝐷𝑞�̂�1−(𝜹 − �̂�)
𝑇

𝐷𝑞�̂� −

(𝜽 − �̂�)
𝑇

𝐷𝑞�̂� . (53) 

By substituting the final controller (39) and adaptive 

laws (40,41) into (53) 

𝐷𝑞𝑉𝑛 ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛−1

𝑖=1 + 𝑧𝑛−1𝑧𝑛 + 𝑧𝑛 (𝜽𝑇𝐺(𝑦, 𝑡) +

∆𝑔(𝑦, 𝑡) + 𝑑𝑠(𝑦, 𝑡) − 𝜹𝑇𝐹(𝑥, 𝑡) − ∆𝑓(𝑥, 𝑡) −

𝑑𝑚(𝑥, 𝑡) − �̂�𝑇𝐺(𝑦, 𝑡) + �̂�𝑇𝐹(𝑥, 𝑡) + 𝐷𝑞𝛼𝑛−1 − 𝑧𝑛−1 −

𝛾𝑛𝑧𝑛 − (�̂�1 + �̂�1)𝑠𝑔𝑛(𝑧𝑛)) − (𝜎1 − �̂�1)𝐷𝑞�̂�1 − (𝜗1 −

�̂�1)𝐷𝑞�̂�1+𝑧𝑛(𝜹 − �̂�)
𝑇

𝐹(𝑥, 𝑡) − 𝑧𝑛(𝜽 − �̂�)
𝑇

𝐺(𝑦, 𝑡). 

 (54) 

It is clear   

⇒ 𝐷𝑞𝑉𝑛 ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛

𝑖=1 + |𝑧𝑛|(|∆𝑔(𝑦, 𝑡) − ∆𝑓(𝑥, 𝑡)| +

|𝑑𝑠(𝑦, 𝑡) − 𝑑𝑚(𝑥, 𝑡)|) − (�̂�1 + �̂�1)|𝑧𝑛| − (𝜎1 −

�̂�1)𝐷𝑞�̂�1 − (𝜗1 − �̂�1)𝐷𝑞�̂�1 . (55) 

Utilizing Assumptions 3 and 4, and by substituting the 

adaptive laws (42,43) into (55) 

𝐷𝑞𝑉𝑛 ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛

𝑖=1 + (𝜎1 + 𝜗1)|𝑧𝑛| − (�̂�1 + �̂�1)|𝑧𝑛| −

(𝜎1 − �̂�1)|𝑧𝑛| − (𝜗1 − �̂�1)|𝑧𝑛| ≤ − ∑ 𝛾𝑖𝑧𝑖
2𝑛

𝑖=1 ≤ 0,  (56) 

where 𝛾𝑖 ≥ 0. Then, using the Lyapunov stability 

Theorem 1, it can be concluded that the synchronization 

error moves toward zero and the synchronization is 

realized. Thus, the Theorem 3 is proved. 

V.NUMERICAL EXAMPLE 

Here, three examples are represented to investigate the 

usefulness of the developed method. Numerical 

simulations have been implemented with MATLAB 

software. 

A. Example1 

In this example, the suggested controller (13) and the 

adaptive laws (14-16) are used to stabilize the uncertain 

fractional-order Genesio-Tesi system. The fractional-

order Genesio-Tesi system with unknown parameters is 

given by the following equation  
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{

𝐷𝑞𝑥1 = 𝑥2                                                 

𝐷𝑞𝑥2 = 𝑥3                                                  

𝐷𝑞𝑥3 = −𝛿1𝑥1 − 𝛿2𝑥2 − 𝛿3𝑥3 + 𝛿4𝑥1
2

  . (57) 

Fig. 1 shows the chaotic motion of the fractional-order 

Genesio-Tesi system (57) for 𝛿1 = 6, 𝛿2 = 2.92, 𝛿3 =
1.2 and 𝛿4 = 1. Initial conditions of the system (57) are 

chosen as 𝑥1(0) = −0.1 𝑥2(0) = 0.5 and 𝑥3(0) = 0.2. 

The fractional-order 𝑞 is also selected to 0.94. 

 

Fig. 1.  The chaotic trajectory of the fractional-order Genesio-
Tesi system (57). 

 

The design parameters  are selected as 𝛾1 = 4 , 𝛾2 = 3 

, 𝛾1 = 2.5 and the order of derivative is 𝑞 = 0.94. The 

uncertainties and external disturbances are selected 

below 

{

𝐷𝑞𝑥1 = 𝑥2                                                 

𝐷𝑞𝑥2 = 𝑥3                                                  

𝐷𝑞𝑥3 = −𝛿1𝑥1 − 𝛿2𝑥2 − 𝛿3𝑥3 + 𝛿4𝑥1
2

  . (58) 

The control strategy in Theorem 2 is utilized to 

stabilize the system (57) with unknown parameters, 

uncertainties and disturbances.  

Figs. 2-4 illustrate the state trajectories of the system 

(57), the time evolutions of the update vector parameter 

�̂� and the time history of the control input (13), 

respectively. As it can be seen, the state trajectories of the 

system (57) tend to zero and the control signal is 

practical. This means that the proposed backstepping 

controller can be used to stabilize fractional-order 

Genesio-Tesi system. Also, the system unknown 

parameters are fully estimated and converge to a constant 

value. 

To compare the performance of our proposed method, 

the fractional-order sliding mode control strategy 

presented in [28] has been simulated to stabilize 

fractional-order Genesio-Tesi system. Fig. 5 shows the 

time response of the control signal via the proposed 

fractional-order sliding mode control method in [28]. As 

it is obvious, the control signal has permanent chattering, 

which limits the practical performance of the proposed 

controller in [28]. These results confirm the superiority 

of the proposed adaptive backstepping method to 

stabilize the fractional-order Genesio-Tesi system. 

 

Fig. 2.  State trajectories of the fractional-order Genesio–Tesi 
system controlled with (13). 

Fig. 3.  Time response of the adaptive vector parameter �̂�.

Fig. 4.  Time history of the control input (13) applied to the 
fractional-order Genesio–Tesi system. 
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Fig. 5.  The time response of the applied control input via the 
method in Ref. [28]. 

 

B. Example 2 

In this example, the suggested adaptive backstepping 

controller (39) is utilized to synchronize two different 

uncertain fractional-order Duffing–Holmes system and 

fractional-order Gyros system. The fractional-order 

Duffing–Holmes system with unknown parameter is 

given by the following equation, 

master system: 

{
𝐷𝑞𝑥1 = 𝑥2                                              

𝐷𝑞𝑥2 = 𝑥1 − 𝛿1𝑥2 − 𝑥1
3 + 0.3cos 𝑡

 , (59) 

where 𝛿1= 0.25. Fig. 6 shows the chaotic behavior of 

the fractional-order Duffing–Holmes system (59) for 𝑞 =
0.98 and the initial condition [𝑥1(0), 𝑥2(0)]𝑇 =

[0.3, −0.2]𝑇. 

 

Fig. 6.  The chaotic trajectory of the fractional-order Duffing–
Holmes system (59). 

 

The fractional-order Gyros system is given below,  

slave system: 

{

𝐷𝑞𝑦1 = 𝑦2                                                            

𝐷𝑞𝑦2 = −100
(1−𝑐𝑜𝑠𝑦1)2

𝑠𝑖𝑛3𝑦1
− sin 𝑦1 − 𝜃1𝑦1 −

𝜃2𝑦2
3 + (1 + 35𝑠𝑖𝑛𝜔𝑡) sin 𝑦1 + 𝑢(𝑡)

  (60) 

where 𝜃1 = 0.5, 𝜃2 = 0.05 and 𝜔 = 1.8. Chaotic 

attractor of this system is revealed in Fig. 7 for 𝑞 = 0.98 

and the initial condition [𝑦1(0), 𝑦2(0)]𝑇 = [−0.1, 0.2]𝑇 . 

 

Fig. 7.  The chaotic trajectory of the fractional-order Gyros 
system (59). 

The design parameters  are selected as 𝛾1 = 2 , 𝛾2 = 2 

and the order of derivative is 𝑞 = 0.98. Furthermore, the 

uncertainties and external disturbances are selected 

below 

∆𝑓(𝑥, 𝑡) = 0.1sin (𝑥2)cos (𝑥1), 𝑑𝑚(𝑡) = 0.1 cos(3𝑡).
 (61) 

∆𝑔(𝑦, 𝑡) = 0.4sin (𝑦1)sin (𝑦2),  𝑑(𝑡) = 0.2 cos(𝑡). (62) 

Therefore, the control algorithm in Theorem 3 is used 

to synchronize system (57) and system (59). Figs. 8-10 

demonstrate the trajectory of master and slave systems, 

synchronization error and the time evolutions of the 

update vector parameters �̂� and �̂�, when the controller 

(39) is utilized. The time history of the control input (39) 

is shown in Fig. 11. It is clear that the proposed controller 

has been able to synchronize both master and slave 

systems even in the presence of uncertainties and 

disturbances. Also unknown parameters of the system 

converge to constant value. To compare the results, the 

fractional-order sliding mode control presented in [29] is 

simulated for the two systems (59) and (60).The control 

signal in [29] is shown in Fig. 12. Clearly, the control 

signal in [29] has fluctuations. These results confirm the 

superiority of our proposed adaptive backstepping 

method in synchronizing two systems (59) and (60).   
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Fig. 8.  State trajectories of the fractional-order Duffing–
Holmes and fractional-order Gyros systems. 

 

 

Fig. 9.  Synchronization errors of the fractional-order Duffing–
Holmes and fractional-order Gyros systems. 

 

Fig. 10.  Time response of the adaptive vector parameters �̂� 

and �̂�. 

 

Fig. 11. Time history of the control input (39). 

 

Fig. 12. The time response of the applied control input via the 
method in Ref. [29]. 

C. Example 3 

In this example, the synchronization of two similar 

indeterminate fractional-order Genesio-Tesi systems is 

examined. The master system is considered as in (57). 

The slave system can be given below 
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{

𝐷𝑞𝑦1 = 𝑦2                                                 

𝐷𝑞𝑦2 = 𝑦3                                                  

𝐷𝑞𝑦3 = −𝜃1𝑦1 − 𝜃2𝑦2 − 𝜃3𝑦3 + 𝜃4𝑦1
2

  , (63) 

where 𝜃1 = 6, 𝜃2 = 2.92, 𝜃3 = 1.2 and 𝜃4 = 1. Initial 

conditions of the system (63) are chosen as 𝑦1(0) =
−0.3 𝑦2(0) = 0.1 and 𝑦3(0) = 1.8. The fractional-order 

𝑞 is also selected to 0.94. 

Figs. 13-15 reveal the trajectories of the master and 

slave systems, the synchronization error and the estimate 

of the master and slave system parameters in the presence 

of suggested controller (39). It is obvious that the 

synchronization errors quickly reach zero and 

accordingly it can be said that both master and slave 

systems are synchronized. Fig. 16 shows the time 

response of control input (39). Fig. 17 shows the control 

input presented in [30]. It is clear that the control input in 

[30] has large fluctuations while the proposed control 

signal in our paper lacks chattering and is practical. 

 

 

 

 

Fig. 13. State trajectories of two fractional-order Genesio–Tesi 
systems. 

 

Fig. 14. Synchronization errors of two fractional-order 
Genesio–Tesi systems. 

 

Fig. 15. Time response of the adaptive vector parameter �̂�. 
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Fig. 16. Time history of the control input (39). 

 

Fig. 17. The time response of the applied control input via the 
method in Ref. [30]. 

 

VI.CONCLUSION 

In this work, a fractional controller utilizing adaptive 

backstepping technique is suggested. This controller can 

be used for a general class of systems. At the first, 

assuming the presence of uncertainties and disturbances, 

the stabilization of fractional-order chaotic system with 

unknown parameters is investigated. Following the 

discussion, the synchronization of two different 

fractional-order chaotic systems with uncertain 

parameters is studied. The detailed analysis is pursuant to 

fractional Lyapunov theorem and adaptive laws to certify 

the stability of the controlled systems. It is needed to 

mention that the suggested method is simple and 

practical. Three examples are presented to examine the 

effectiveness of suggested approach and provide a deeper 

view of the proposed controller applications. The results 

of our suggested technique are compared with the results 

of some available papers. The simulation results show 

better performance of the proposed controller in this 

paper.  
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